设为首页 | 加入收藏
产品中心
联系方式

24小时咨询电话:186343600
电话:010-5511227
传真:010-5599004
网址:http://iksyt.com
邮箱:34437854@qq.com
地址:北京市312国道交叉口东南角
定硫仪(测硫仪)当前位置: 龙虎游戏 > 产品中心 > 定硫仪(测硫仪) >

锂硫电池电解液该选择什么样的氢氟醚

时间:2019-10-21   作者:极速赛车500彩票 点击:

  研究者还对不同HFE电解质进行电导率测试以探测离子运输性。结果表明基于BTFE电解质的电导率最高,而TTE电解质的电导率最低。C组HFE电解质由于其相对高的锂溶剂化能力和极性而表现出最高的电导率。由于非溶剂化性质,A组HFE电解质在减轻LiPS溶解方面效果最佳,但表现出最低的电导率。HFE电解质的电导率关系:C B A。因此,通常选择C组HFE作为电解质的共溶剂。

  图2a和2b分别为不同电解质的Li-S电池的容量保持率和库仑效率(CE)。结果表明基于TTE-,TFETFE-,TFEPE-和TFEiBE的电池均显示出高的初始比放电容量,基于BTFE的电池则显示出更低的初始容量和更好的容量保持率。为评估LiPS的穿梭效应,采用实验分别得到放电容量为850 mAh g-1电池的CE和穿梭因子,结果如表1所示。在相同的放电容量下,HFE基电解质的f值远小于常规醚。含有MtBE共溶剂电解质的穿梭因子显著大于BTFE。这些结果再次证明了在醚共溶剂下,氟代烷基的吸电子效应可有效减轻LiPS溶解中的空间位阻。根据实验得到的穿梭因子,HFE共溶剂可分为三组。 BTFE(0.27)具有比TFEPE和TFEiBE(0.17)更大的f值,基于TTE和TFETFE(0.04)显示出最低的f值。该划分与基于氟烷基位置的分组相同。因此,A组HFE具有最低的锂溶剂化能力和LiPS溶解能力,而C组HFE在所有三组中最高。

  这项研究制定了具有普适性HFE的选择规则。根据氟烷基与氧原子的相对位置,常用HFE可分为三组。由于α-和β-取代的氟代烷基的存在,A组HFE显示出最低的锂溶剂化能力和最有效的抑制LiPS溶解的能力,C组与之相反。然而,C组HFE电解质具有最高的导电性,使得其更适合作为电解质的共溶剂。结果证明吸电子氟代烷基的位置会决定HFE性质。该发现不仅可以指导选择合适的HFE助溶剂,而且为设计和合成新的功能性HFE提供方向。本文首次建立了电解质溶剂与Li-S电池界面反应之间的LFER。LFER参数可作为探讨LiPS反应机理和验证材料对缓解LiPS溶解的有效工具。

  表1 不同电解质共溶剂的Li-S电池在850 mAh g-1放电容量下的γ、CE和f值。

  图1a和1b分别表示的DOL:BTFE摩尔比为4:1和LiTFSI:DOL:BTFE摩尔比为1:4:1 的DOSY光谱。数据表明,不加LiTFSI时,DOL扩散最快,而BTFE最慢;添加LiTFSI后,DOL的扩散系数降低最大,这意味着DOL会显著的溶解锂。通过比较两者的扩散系数和配位数,结果显示DOL对锂的溶剂化能力高于BTFE。

  测量TFEPE和TFEiBE电解质的锂扩散系数,配位比和配位数。结果表明所有三种电解质的配位数均约为2,A组的锂离子溶剂化能力最低,B组HFE的配位比明显小于C组。锂离子主要通过DOL溶剂化,因此配位比越小则锂的溶剂化能力越低。通过对比添加LiTFSI前后TTE和TFETFE的扩散系数比,A组HFE的扩散系数比表明其具有与甲苯相同的低锂溶剂化能力。根据BTFE,TFEiBE和TFEPE的配位比,研究者计算了相应HFE的γ值,结果如表1所示,HFE的溶剂化能力显著小于各种非氟醚。结果表明,在降低醚的锂溶剂化能力方面,氟烷基强烈的吸电子效应可以胜过空间位阻效应。

  随着锂电池的大规模应用,发展可靠的电解液,并深入理解其机理显得尤为重要。由于低的溶剂化特点,氢氟醚(HFEs)作为电解液共溶剂已经得到广泛应用,其可增加电解液氧化还原稳定性、降低电解液黏度、构筑电解液局部浓度。同时,该电解液有助于抑制多硫化物的穿梭。尽管其应用领域宽泛,少量研究如氟原子的位置比其数量对短链(小于7个碳原子)HFEs的影响更为显著等的报道,但是从分子内部结构去理解电化学性能非常欠缺。

  IR-DOSY和D-α分析技术可以实现溶剂化状态的定量测定,而相对溶剂化程度(γ)可以作为多硫化锂(LiPS)穿梭效应的指标。本文,研究者采用IR-DOSY技术探测LiTFSI和DOL电解质中的HFE的溶剂化行为和γ值。

  氢氟醚中氟代烷基可以在α,β或α和β位。其中,α和β取代是氟烷基被限定在与氧原子最接近的位置,具有α氟烷基取代的氢氟醚在其β位置也可有氟烷基。根据氟烷基与氧原子的位置,HFE可分为三组。

  B组包括1-(1,1,2,2-四氟乙氧基)丙烷(TFEPE)和2-甲基-1-(1,1,2,2-四氟乙氧基)丙烷(TFEiBE),两者均仅具有α-取代的氟烷基;

  C组包括1,1,1-三氟-2-(2,2,2-三氟乙氧基)乙烷(BTFE),在α-,β-和β具有取代的氟烷基。

  为评估电解质溶剂和LiPS副反应之间的定量构效关系(QSAR),研究者分别绘制了不同溶剂,放电容量为850 mAh g-1的log[2f+ln(1+f)]与logγ关系曲线-f)]与logγ关系曲线所示。这两个线性关系证明了Li-S电池中电解质溶剂结构与LiPS穿梭之间存在线性自由能关系(LFER)。因而得到电解质溶剂的γ与LiPS穿梭效应之间的直接相关性。这是首次尝试在电解质溶剂和锂电池中的界面反应之间建立LFER关系。响应因子(ρ)在评估材料是否可以减少LiPS副反应方面非常有用。抑制LiPS副反应的越强,响应因子越低。高的相关系数表明LFER的可信度高,这种新方法不仅可以探测Li-S化学的机理,而且可以探测功能材料的效能。吸电子氟代烷基的位置决定了氢氟醚的锂溶剂化能力,决定了LiPS溶解的程度。

Copyright 2010-2019 龙虎游戏 版权所有
地址:北京市312国道交叉口东南角 销售热线:15737223600
电话:010-5511227